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1. INTRODUCTION

Hypersonic launch and flight technology for large caliber weapons systems, both con-
ventional and nonconventional, continues to be developed within the U.S. Army research

community. The hypersonic flight regime and the accompanying violent launch environment
pose formidable challenges for projectile designers. The current families of kinetic energy

(KE) projectiles were designed for supersonic, rather than hypersonic, applications. One

major problem with the current finned KE rounds is that the fins are expected to fail be-
cause of excessive heating and structural loading in the hypersonic launch regime. Finned

afterbody modification appears to be inevitable, and the relative merits of finned versus
flared afterbodies require close examination.

The M829 projectile is one of several large caliber long-rod finned KE rounds being
considered as a starting point in the design of the new generation of hypersonic projectiles.

The M829, while not the most lethal (or longest) KE projectile in the 120-mm family,
provides a good starting point for hypersonic projectile design. The M829 is less costly

than the more lethal KE rounds and plays a major role for engagement against a variety

of heavy armor targets. In addition, rod bending and buckling are of less concern for the
M829 compared to the longer rounds - characteristics that may be valuable in the hypersonic

launch regime.

In this report, possible geometry modifications for the M829 finned afterbody are ex-

amined in order to generate a set of guidelines for aerodynamic performance. Simple flared
afterbody configurations are attractive because of their potential to reduce the heating and

structural concerns associated with fins. Flared bodies provide less stability than finned af-

terbodies (for equivalent drag), but flared afterbodies may still achieve the required terminal
effect if the launch velocity is substantially higher than that of the current launch systcms.

The objective of this report is to present computed zero-yaw drag and small-yaw static
pitch-plane aerodynamic coefficients of a conceptual modified M829 projectile, in which the

fins have been replaced by a flare. The aerodynamic coefficients are computed using an in-

house Parabolized Navier-Stokes (PNS) computational technique, which is briefly outlined.
Results are presented for velocities in the range 1.5 to 3.0 km/sec, for flare angles as great as
200. Base drag estimates are added to the PNS results to form total drag coefficients. The
coefficients are compared to M829 computational results and range firings, and observations

are made of the drag-stability trade-off between the configurations.
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2. CONFIGURATIONS AND FLIGHT CONDITIONS

Two configurations are examined. The first is the M829 projectile, which is a fielded,
fin-stabilized, long-rod KE projectile fired from a 120-nmm gun tube. The second is an

M829-like cone-cylinder-flare configuration (identified here as F829), which is a conceptual

hypervelocity projectile design. The computational model of the M829 projectile (see Figure
1) is a simplified version of the actual model. The F829 model (see Figure 2) is identical to

the M829 model except that the fins are replaced by a flare.

Both models possess an 8* conical nose section, followed by a cylindrical section of di-

ameter 27.05 mm (1 caliber). The total model length is about 23 calibers. The actual blunt

nosetip is replaced by an extended, pointed, conical nosetip. In the current study, all models

are assumed to possess the same center of gravity (CG), 12.76 calibers from the pointed

nosetip.

The M829 model has six uncanted fins with a sweep angle of approximately 71° (i.e., a

fin angle of 190) equally distributed around the body and aligned with the projectile axis.

The sabot grooves on the cylindrical portion of the actual configuration are replaced with a
smooth surface. No leading edge or trailing edge bevels are included in the computational

model. The overhanging fin of the actual projectile is modeled with the cylinder extending

to the fin trailing edge, as shown in Figure 1. The resulting fin gap is modeled as a solid

structure.

The flare angle of the F829 model is varied from 00 to 200. It is assumed that the flow

does not separate at the cylinder-flare juncture. A small fillet is added to the computational

geometry at the cylinder-flare juncture to impose a smooth, attached flow. The computed
flow field must remain attached as a numerical stability requirement of the PNS technique.

From a projectile design standpoint, massive flow separation ahead of the flare is probably

not desirable, since it can induce loss of lift and local areas of large aerodynamic heating.

Computational results for the F829 configuration are presented for freestream velocities

1.5, 2.0, and 3.0 km/sec. Computational results for the M829 configuration are shown for

freestream velocities 1.5, 1.7, and 2.0 km/sec. The service launch velocity of the M829 is

approximately 1.7 km/sec, as given in Department of the Army Firing Table FT 120-D-1.

The M829 decelerates to a velocity of 1.5 km/sec at a range of approximately 3.0 km.

Atmospheric, sea-level, freestream conditions are assumed for all computations. The

angle of attack is fixed at either 00 or 20. The spin rate is fixed at 0 rpm, and the flow is

assumed fully turbulent. The wall temperature is specified as 294 K. The Reynolds numbers

for the velocities of interest are shown in Table 1.
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Table 1. Flight Conditions of Interest

Velocity Mach No. Reynolds No.

(km/sec) (Re,,)

1.5 4.4 99.6 x 106

1.7 4.9 113.0x 106

2.0 5.9 133.9x 106

3.0 8.8 199.6x 106

3. PARABOLIZED NAVIER-STOKES CFD TECHNIQUE

3.1 Overview. The PNS technique has been adapted and extensively used within the

U.S. Army Research Laboratory (ARL) (formerly the Ballistic Research Laboratory) and is

a powerful computational fluid dynamics (CFD) research tool for predicting supersonic and

hypersonic projectile aerodynamics. The PNS technique is a space-marching (as opposed to a

time-marching) technique; that is, one numerical integration sweep is made from the nosetip

of the projectile to the base to obtain a single steady state solution. A typical solution for

a three-dimensional geometry at angle of attack in this study was generated using about 1

or 2 hours of processing time on the Cray X-MP computer. Axisymmetric configurations at

00 angle of attack took less than 10 minutes each.

The PNS technology was first applied to U.S. Army projectiles to compute static pitch-

plane and Magnus coefficients for spinning and non-spinning shell and for wind tunnel models

at various angles of attack (Sturek & Schiff 1981; Schiff & Sturek 1981). Similar applications

were made to shell at moderate angle of attack and to finned KE projectiles (Weinacht,

Guidos, et al., 1985, 1986). The technique was modified to compute roll characteristics of

finned KE projectiles with exact fin geometry using a rotating coordinate frame (Weinacht

& Sturek 1988). Further modifications were added to compute the pitch damping of axisym-

metric (Weinacht, Sturek, & Schiff 1991) and finned (Weinacht & Sturek 1990) projectiles,

including the M829 configuration, using a coning coordinate frame.

The PNS approach has also been used for other in-house research and design studies.

Blunt nosetip solutions were marched downstream using the PNS code and were compared

to wind tunnel data (Guidos, Weinacht, & Dolling 1990). Studies have also been made for

electro-magnetic launch projectiles (Weinacht 1989), small caliber training rounds (Guidos

1987), and solid fuel ramjet external flow (Guidos 1989). More recently, efforts have focused

on perfect gas, hypersonic heat transfer for large caliber finned KE projectiles and cone-

cylinder-flares (Guidos & Weinacht 1993).
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3.2 Computational Approach. The PNS technique introduced by Schiff and Steger

(1979) is a three-dimensional, finite difference, viscous flow solution procedure for attached

supersonic and hypersonic flow fields. The PNS technique spatially integrates the dimen-

sionless, transformed, steady, thin-layer, mass-averaged Navier-Stokes equations in strong

conservation law form. The governing equations represent steady state conservation of mass,

momentum, and energy in transformed coordinates for large Reynolds number flows. The

Cartesian form of the equations is

0 E:, OF aOG - -iS+ -+ Re(: l
017 ac'a4 - l (1)+------

These equations were recast in cylindrical coordinates and applied by Rai and Chaussee

(1983). The major advantage is that the cylindrical coordinate formulation requires only

three circumferential grid planes for axisymmetric flow cases within the framework of the

bilateral symmetry that is imposed. The cylindrical form of the governing equations is

OE, ('F aG a -ms -
-c + T 4 + H, = Re(- + ) (2)

The vectors E8 , F, and G contain the transformed inviscid fluxes. E. is a modified

flux vector resulting from the subsonic sublayer approximation (Schiff & Steger 1979). The

vector S is the transformed vector of viscous terms that results from the thin layer approx-

imation. The vectors ft, and S, contain inviscid and viscous source terms, respectively,

resulting from the cylindrical coordinate formulation. The components of the vectors for the

Cartesian formulation are given in many sources, including Schiff & Steger. The components

of all the vectors for the cylindrical formulation are given by Weinacht and Sturek (1990).

The three transformed coordinates are: = ý(x), the axial (marching); q/ = tq(x, y, z), the

circumferential coordinate; and ( = C(x, y, z), the radial coordinate. The transposed vector

of dependent variables is defined as

Q = [p, pu, pv',pw, ] (3)

in which the density is p; the axial, circumferential, and radial velocity components are are

u, v, and w, respectively; and the total energy per unit volun.- ;s e.

The solution is obtained at each grid point using the approximately factored, implicit,

delta form, finite difference algorithm of Beam and Warming (1978). Second-order central

differencing is used in the circumferential and radial dircctions, and first-order one-sided

differencing is used in the marching direction. The solution is advanced downstream by

numerically integrating in the main flow direction. Each marching step requires a series
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of block tridiagonal matrix inversions (sweeps) in the circumferential and radiai directions.

Fourth-order explicit smoothing terms are added to suppress high frequency oscillations.

Second-order implicit smoothing terms are added to maintain numerical stability in regions

of large pressure gradients (such as fin leading edges). Initial conditions for marching are

generated using the PNS method in step-back mode (Sturek & Schiff 1981), which assumes

conical flow conditions near the nosetip and iteratively refines the solution to satisfy this

assumption.

Perfect gas behavior is assumed. Turbulence is accounted for using the two-layer, alge-

braic eddy viscosity model of Baldwin and Lomax (1978). In that model, the inner wall

layer eddy viscosity is computed using a conventional Prandtl mixing length with Van Dri-

est damping. The outer, or wake, layer eddy viscosity is based upon an evaluation of the

maximum moment of vorticity and its distance from the wall. The calculation of the eddy

viscosity is lagged by one marching step.

The outer boundary, which consists of the bow shock, is shock fitted using the implicit

procedure reported by Rai and Chaussee (1983). The capability also exists to capture the

bow shock by employing freestream conditions at the outer boundary grid points. The body

surface boundary conditions are applied assuming that the spinning ard coning rates are

zero. The no-slip condition is enforced and the pressure is held constant across the subsonic

portion of the boundary layer (i.e., the subsonic sublayer approximation). The energy is

defined from the pressure using the perfect gas law. The wall temperature is specified, and

the density is determined from the temperature and pressure.

4. RESULTS

Figures 3 through 5 show the computed zero-yaw surface pressures for the F829 config-

uration with various flare angles, for velocities 1.5, 2.0, and 3.0 km/sec. All the computed
pressures reach a maximum value I or 2 calibers downstream from forebody-afterbody junc-

ture, then decrease slightly over the remainder of the afterbodies. Figure 6 shows the com-
puted zero-yaw forebody and fin leading edge surface pressures for the M829 projectile for

velocities 1.5, 1.7, and 2.0 km/sec. At 1.5 km/sec, a flare angle of 160 is computed to have
about the same peak pressure as the M829 fin. At 2.0 km/sec, a flare angie of 20' is computed

to have about the same peak pressure as the M829 fin.

The computed pressures and shear stresses are integrated over the entire projectile surface

to form a set of aerodynamic force and moment coefficients at 0* and 2' angle of attack.

These forces and moments do not include contributions and effects attributable to the blunt
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nosetip, sabot grooves, leading and trailing edge bevels, base, or (in the case of the finned

projectile) fin trailing edge. The drag force yielded by PNS is referred to as the "forebody"
drag coefficient, CDo1.

The base drag is estimated using an average base pressure correlation from McCoy (1981),
with the base diameter specified to be I caliber regardless of the actual flare angle. For the
finned geometry, the presence of fins is ignored. It is noted that finned and flared geometries
have lower base pressure than a cylindrical base with no fins (Heyser, Maurer, & Oberdorffer,
1966; Sedney, 1966). The estimated base pressure is then integrated over the actual base area
(and fin trailing edges, if applicable) of the individual configurations. The estimated base
pressure values obtained from this approach are given in Table 2. The resulting base drag
coefficient, Coo., is then added to the forebody drag coefficient to obtain the total zero-yaw
drag coefficient, CD.. The values of these and all the computed aerodynamics coefficients
are shown in Tables 3 and 4.

Table 2. Estimated Base Pressures

Velocity Base Pressure

(km/sec) PB /p_

1.5 .146

1.7 .118

2.0 .080

3.0 .035

Table 3. Computed Results - M829 Configuration

V (km/sec) CD., CD.. CD, CN,. CP C..

1.5 0.392 0.117 0.509 15.83 17.59 -76.50

1.7 0.389 0.097 0.486 14.64 17.19 -64.85
2.0 0.381 0.070 0.451 12.93 16.50 -48.41

In Figures 7 through 9, the computed F829 zero-yaw forebody drag and viscous (skin
friction) and inviscid (pressure) components are shown as a function of flare angle, for veloc-
ities 1.5, 2.0, and 3.0 km/sec. For flare angles less than 80, the viscous component provides

more of a drag contribution than the pressure component. For this length of flare, flare an-
gles greater than 80 cause a dramatic increase in the pressure component of forebody drag,
resulting in a significant increase in total forebody drag. The forebody drag associated with
flare angles greater than 120 is quite large and is probably beyond consideration for KE
projectile design purposes. No further results are presented for flare angles greater than 120.
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Table 4. Computed Results - F829 Configuration

V=1.5 km/sec

Flare Angle CD., CD,. CDo CN, CP Cm-

0o 0.197 0.063 0.260 3.51 4.19 30.09
40 0.250 0.160 0.410 5.39 10.17 13.96

60 0.330 0.225 0.555 6.85 12.56 1.37

80 0.471 0.303 0.774 8.67 14.45 -14.65

100 0.700 0.392 1.092 10.86 15.90 -34.10

120 1.050 0.495 1.545 13.41 17.02 -57.06

160 2.267 0.742 3.009 N/A N/A N/A

200 4.509 1.052 5.561 N/A N/A N/A

V=2.0 km/sec

Flare Angle CD,, CD.B CDo CN, CP Cm0

00 0.169 0.038 0.207 3.87 5.10 29.64
40 0.214 0.096 0.310 5.77 10.44 13.39

60 0.275 0.135 0.410 7.35 12.80 -0.29

80 0.394 0.181 0.590 9.35 14.65 -17.67

100 0.591 0.235 0.826 11.73 16.05 -38.60

120 0.949 0.296 1.245 14.41 17.09 -62.40

160 2.111 0.444 2.555 N/A N/A N/A

200 4.269 0.630 4.899 N/A N/A N/A

V=3.0 km/sec

Flare Angle CDo, CD.. CD. CNo CP C.,
00 0.135 0.018 0.153 4.02 5.91 27.55
40 0.167 0.045 0.212 5.92 10.89 11.09

60 0.223 0.064 0.287 7.75 13.36 -4.65

80 0.332 0.086 0.418 10.12 15.23 -25.00

100 0.528 0.111 0.639 12.82 16.52 -48.20

120 0.832 0.140 0.972 15.62 17.39 -72.26

160 1.920 0.210 2.130 N/A N/A N/A

200 3.925 0.297 4.222 N/A N/A N/A
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In Figure 10, the computed F829 zero-yaw drag coefficients are plotted as a function of

Mach number, with flare angle as a parameter. Comparison is made with the computed and

measured drag coefficients for the M829 projectile. The measured data are obtained from

standard yaw-drag fits of unpublished M829 range firings performed by F.J. Brandon at

Aberdeen Proving Ground in 1983, using the equations of free flight motion (Murphy 1963).

The comparison between computation and experiment is within 10-15%. At the current

launch velocity, the drag coefficient of the F829 with a 60 flare is shown to be comparable
to the drag coefficient of the M829. At that same velocity, the drag coefficient of the F829

with a 100 flare is about twice as large as the drag coefficient of the M829.

Figures 11 through 13 show the computed F829 and M829 normal force coefficient (CNa),

center of pressure (CP), and pitching moment coefficient (Cm0 ), respectively, as functions

of Mach number, with flare angle as a parameter. As already noted, the CG of each con-

figuration is assumed to be the same. The measured M829 results are included in each of

the three figures. The M829 computed results for CN0 and CP agree to within the scatter

of the measured results. The M829 computed results for C,,,m show slightly more stability
than the measured results, likely attributable to the additional fin and cylinder surface area

present in the computational model (discussed in Section 2). The precise values of all the

computed pitch-plane coefficients are included in Tables 3 and 4.

Figures 11 through 13 also show that the F829 configurations with flare angles less than

60 are statically unstable at all the velocities considered here. It is true that a flare angle of

120 does give the F829 configuration a CP value comparable to the M829 near the current

launch velocity, but with more than twice the drag. On the other hand, an F829 flare angle

small enough to yield drag comparable to the M829 is probably statically unstable.

The finned (M829) and the flared (F829) configurations show different trends with respect

to velocity. For the M829 configuration, CP decreases with increasing velocity; for the F829

configurations, CP increases (although the increase is quite small). Strictly speaking, as

the velocity increases into the hypersonic regime, a smaller flare angle is required to provide

the F829 with CP values comparable to the M829. However, it has yet to be determined

whether the static stability of the M829 is sufficient at these higher velocities.

If the current launch level of CP for the M829 must be maintained for higher-than-current

launch velocities, then necessary design considerations would impact the afterbody design,

regardless of fins or flares. For a finned afterbody, fin planform area (i.e., lift) would need

to be increased or the current fins would somehow need to be moved rearward. For a flared

afterbody, a flare angle of 100 or 120 might be required. If terminal velocity is a predominant

design consideration, then the velocity retardation of the designs with equivalent CP would
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need to be compared to determine muzzle velocity requirements. At the current launch

velocities, at least, comparisons clearly show the current M829 fin design to outperform

F829 flare configurations in terms of both drag and static stability.

One obvious conclusion that should not be overlooked is that the in-flight variations

of static stability of the finned and flared configurations are distinctly different, since the

velocity is decreasing. The finned configuration gains static stability during flight, while the

flared configuration loses static stability.

Figures 14 through 16 are constructed using these same results, but arranged to show

the drag-stability tradeoff for the F829 configuration. These three figures show CN., CP,

and Cm0 , respectively, versus CD.. Velocity and flare angle are used as parameters. For

flare angles above 60, rearward movement of the CP is accomplished only at the expensc

of large increases in drag. A rearward shift in CG location for afterbodies with larger flare

angles (which would presumably outweigh those with smaller flare angles) would amplify

this behavior further for C,,,o.

5. CONCLUSION

Parabolized Navier-Stokes results have been presented of zero-yaw drag and small angle

of attack static pitch-plane aerodynamics for a M829-like cone-cylinder-flare geometry. The

cone-cylinder-flare configuration, designated F829, is a hypothetical configuration in which

the fins of an M829 projectile have been replaced by a flare of various angles. Aerodynam-

ics results for the F829 were presented for velocities 1.5, 2.0, and 3.0 km/sec. Additional

computational results were presented for the M829 projectile at velocities 1.5, 1.7, and 2.0

km/sec, including aerodynamics range data.

The results show that the aerodynamic design of an M829-like hypersonic projectile

configuration may be driven by consideration of the drag-stability trade-off. The use of a

flared rather than finned afterbody for an M829-like configuration would require a substantial

drag penalty to be paid for the same static stability as the current M829. The total drag of

the F829 cone-cylinder-flare configuration with a 6* flare is comparable to that of the M829

projectile, but is barely statically stable, assuming the same CG for both configurations. On

the other hand, the F829 with a 120 flare has static stability comparable to the M829 near

the current launch velocities, but with more than double the total drag.

As the velocity is increased, a smaller flare angle is required to provide the F829 config-

uration with static stability comparable to the M829. However, it has yet to be determined

that the static stability of the M829 will even be sufficient at higher-than-current veloci-
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ties. If the current M829 launch value of CP must be maintained for applications above

2 km/sec, then necessary design changes would impact the afterbody design, regardless of
fins or flares. In either case, a reduction in static stability could lead to increased sensitivity
to aerodynamic jump or to degradation in penetration because of increased terminal yaw.

For launch velocities at or slightly above the current ordnance velocity, the aerodynamic

performance of the F829 flared configurations is significantly below that of the current finned

M829. The possibility exists that a flared projectile with less static stability and higher drag
than the M829 projectile could still achieve the required terminal effect at significantly higher

launch velocities. The results presented here suggest that aerodynamics considerations alone

will not provide sufficient impetus to abandon fins in favor of flares in the near future.
However, it is generally accepted that the continued use of fins for hypersonic applications

will require improved aerothermal and/or structural integrity.

The precise in-flight behavior of candidate designs will depend upon additional factors not

specifically addressed here, such as the exact physical properties and dynamic aerodynamics

coefficients such as pitch damping. The aerodynamics coefficients for the configurations
presented here provide a valuable starting point for designers to assess velocity retardation

and static stability for anticipated hypersonic launch velocities.
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Figure 1. Schematic of M829 Projectile Configuration
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Figure 9. Computed Zero-Yaw Forebody Drag Components for F829 With Various Flare
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Configuration and M829 Projectile
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LIST OF SYMBOLS

a speed of sound

CD, zero-yaw drag coefficient

CDoo zero-yaw base (and fin trailing edge) drag coefficient

CDo! zero-yaw forebody drag coefficient

C.. pitching moment coefficient, evaluated as C,,,/a, a in radians

CN. normal force coefficient, evaluated as CN/a, a in radians

CP normal force center of pressure, calibers from pointed nosetip

d reference diameter of projectile

Eo,, P, d inviscid flux vectors of transformed gas dynamic equations

He inviscid source term for cylindrical coordinate formulation

of transformed gas dynamic equations

I reference length

p pressure
Q vector of dependent variables of gas dynamic equations

lie freestream sonic Reynolds number, pooaood/lpo

Re,,, freestream Reynolds number, pooVooi/poo, based on a reference length of 1 meter

S viscosity vector of transformed gas dynamic equations

•dc viscous source term for cylindrical coordinate formulation

of transformed gas dynamic equations

V velocity
u, v, w velocity components in x, y, z directions

x, Y, z physical Cartesian coordinates

Greek Symbols
a total angle of attack; pitch angle; yaw angle
e total energy per unit volume of fluid
P coefficient of molecular viscosity

p density

77, i7, ( transformed coordinates

Subscript

00 freestream condition

B projectile base condition
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